Showing posts with label slimprob. Show all posts
Showing posts with label slimprob. Show all posts

Wednesday, 22 July 2020

Computational Prediction of Disordered Protein Motifs Using SLiMSuite

Edwards RJ, Paulsen K, Aguilar Gomez CM & Pérez-Bercoff Å (2020): Computational Prediction of Disordered Protein Motifs using SLiMSuite. Methods Mol Biol. 2141:37-72. doi: 10.1007/978-1-0716-0524-0_3. [PubMed]

Abstract

Short linear motifs (SLiMs) are important mediators of interactions between intrinsically disordered regions of proteins and their interaction partners. Here, we detail instructions for the computational prediction of SLiMs in disordered protein regions, using the main tools of the SLiMSuite package: (1) SLiMProb identifies and calculates enrichment of predefined motifs in a set of proteins; (2) SLiMFinder predicts SLiMs de novo in a set of proteins, accounting for evolutionary relationships; (3) QSLiMFinder increases SLiMFinder sensitivity by focusing SLiM prediction on a specific query protein/region; (4) CompariMotif compares predicted SLiMs to known SLiMs or other SLiM predictions to identify common patterns. For each tool, command-line and online server examples are provided. Detailed notes provide additional advice on different applications of SLiMSuite, including batch running of multiple datasets and conservation masking using alignments of predicted orthologues.

Friday, 15 June 2018

Optimising intrinsic protein disorder prediction for short linear motif discovery

Kirsti M G Paulsen, Norman E Davey, Sobia Idrees, Åsa Pérez-Bercoff & Richard J Edwards.

This work was presented at the Sydney Bioinformatics Research Symposium 2018. (Abstract below.) Click on thumbnail for full resolution PDF.

Abstract

Short linear motifs (SLiMs) are short stretches of proteins that are directly involved in protein-protein interactions (PPI). Identifying SLiMs is important for understanding fundamental processes involved in normal cellular function. SLiMs are commonly only 3 - 10 amino acids in length and form low affinity interactions. This makes them ideal for fast cellular processes, such as cell signalling or response to stimuli, but also difficult to predict experimentally. As a result, many computational SLiM prediction methods have been developed. In order to increase the signal to noise ratio of SLiM predictions, different sequence masking techniques have been developed. These attempt to screen out areas that are unlikely to contain SLiMs and thereby preferentially eliminate the random nonfunctional sequences. One widely implemented masking strategy is to remove protein regions that form stable three-dimensional structures; SLiMs are typically found in regions of intrinsic disorder that are natively unstructured in their unbound form. To date, there has been no systematic study of how best to predict intrinsic disordered protein regions for SLiM discovery. Poor quality predictions will not have the desired noise-removal, while over-stringent masking will remove too many true positives. The aim of this study is to compare how ten different disorder prediction methods affect SLiM occurrence prediction and to identify the best method and settings for this purpose. The disorder prediction scores for each residue in the human proteome was obtained from the MobiDB database. Further, this study aims to investigate whether the optimal disorder masking settings for occurrence SLiM prediction are the same for de novo SLiM prediction and for identification of SLiM mediated PPIs.

Friday, 21 July 2017

Kirsti Paulsen (MPhil student)

Kirsti Paulsen graduated with distinction from UNSW with a Bachelor of Science, majoring in Genetics. She started in the Edwards Lab as an MPhil student in July 2017. Kirsti’s project is evaluating the use of intrinsic disorder predictors for short linear motif discovery.

[LinkedIn]

Tuesday, 11 July 2017

The SLiMEnrich Shiny App is now live

SLiMEnrich

Sobia’s first Shiny App is now up and running for final pre-publication testing on our new EdwardsLab RShiny server. Please feel free to try it out. Any comments and suggestions can be posted here, by email, or via the GitHub issues page.

The SLiMEnrich App allows users to predict Domain-Motif Interactions (DMIs) from Protein-Protein Interaction data (PPI) and to estimate the background distribution of expected DMI by chance through a randomisation approach. The walkthrough has more details.

SLiMEnrich can be used to:

  • Estimate the enrichment of SLiM-mediated DMI in a given PPI dataset.
  • Generate predictions for DMI-mediated from a PPI dataset. Predictions are based on known SLiM-Domain interactions.
  • Estimate the False Positive Rate of those DMI predictions.
  • With a bit of imagination, SLiMEnrich can be adapted to generate and assess predictions for other kinds of interactions. See docs for details.

    SLiMEnrich is available via the SLiMEnrich RShiny webserver and can be downloaded for local running from the SLiMEnrich GitHub repo.

    Friday, 9 October 2015

    #ABACBS2015 Poster P20: SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks

    Emily Olorin, Kevin T. O’Brien, Nicolas Palopoli, Åsa Pérez-Bercoff, Denis C. Shields & Richard J. Edwards. http://f1000research.com/posters/4-1024.

    Abstract

    Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server.

    Friday, 7 August 2015

    SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks

    The latest paper from the lab (featuring work from Emily Olirin’s summer project) is now out at F1000Research. We’ve not gone down the post-publication peer review route before, so it will be interesting to see how that goes, but it made sense in this case as it’s part of a special Cytoscape Apps channel. Rest assured that it has undergone technical review, just not scientific review. [At time of submission: peer review now complete.]

    Olorin E, O’Brien KT, Palopoli N, Pérez-Bercoff A, Shields DC, Edwards RJ (2015): SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks [version 1; referees: 2 approved]. F1000Research 4:477. (doi: 10.12688/f1000research.6773.1)

    Abstract

    Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.