Thursday 2 April 2020

Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C

Our latest paper is out! This one is a bit more photogenic than the cane toad - a German Shepherd Dog called Nala. This was a big international effort in a collaboration led by Bill Ballard at UNSW that included a dozen institutions across four continents. We threw all the main sequencing technologies at this one and achieved a chromosome-level assembly of better quality than the current “CanFam” reference genome.

You can find out more in the UNSW press release.



Field MA, Rosen BD, Dudchenko O, Chan EKF, Minoche AM, Edwards RJ, Barton K, Lyons RJ, Enosi Tuipulotu D, Hayes VM, Omer AD, Colaric Z, Keilwagen J, Skvortsova K, Bogdanovic O, Smith MA, Lieberman Aiden E, Smith TPL, Zammit RA & Ballard JWO (2020): Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. GigaScience 9(4):giaa027. [GigaScience]


Abstract

Background

The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training. Such diseases are of particular concern when they occur later in life, and fully trained animals are not able to continue their duties.

Findings

Here, we provide the draft genome sequence of a healthy German Shepherd female as a reference for future disease and evolutionary studies. We generated this improved canid reference genome (CanFam_GSD) utilizing a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. The GSD assembly is ∼80 times as contiguous as the current canid reference genome (20.9 vs 0.267 Mb contig N50), containing far fewer gaps (306 vs 23,876) and fewer scaffolds (429 vs 3,310) than the current canid reference genome CanFamv3.1. Two chromosomes (4 and 35) are assembled into single scaffolds with no gaps. BUSCO analyses of the genome assembly results show that 93.0% of the conserved single-copy genes are complete in the GSD assembly compared with 92.2% for CanFam v3.1. Homology-based gene annotation increases this value to ∼99%. Detailed examination of the evolutionarily important pancreatic amylase region reveals that there are most likely 7 copies of the gene, indicative of a duplication of 4 ancestral copies and the disruption of 1 copy.

Conclusions

GSD genome assembly and annotation were produced with major improvement in completeness, continuity, and quality over the existing canid reference. This resource will enable further research related to canine diseases, the evolutionary relationships of canids, and other aspects of canid biology.

Photo credit: Outdoor Action Photography.